Subject Index

Accumulators (see Thermal storage)
ACTDP cryocooler development, 1
ADR (see Magnetic refrigerators)
Adv. Mechanical Tech., Inc., 587
Advanced Research Systems, Inc., 411
Aerospace Corporation, 225
Air Force Research Lab (AFRL):
 Astrium 10K cooler testing, 59
 Ball 35K/60K PSC testing, 51
 linearity of flexure suspension systems, 255
 modeling periodic flow in regenerators, 555
 research initiative overview, 9
 TRW HCC two-stage PT cooler, 219
Air Liquide DTA (France):
 50-80K PT cooler for space, 165
 high capacity 5W-80K PT cooler, 131
 high capacity Stirling cooler for ISS, 31
 sub-Kelvin sorption/PT cooler, 669
AIRS instrument cryocoolers:
 ground and in-space performance, 747
 in NASA cooler programs overview, 1
Aisin Seiki 4K pulse tube, 309
Alabama Cryogenic Engineering, 483
Ames Research Center (NASA):
 LMA pulse tube flight experiment, 777
 TRW HECPT cooler testing, 199
Ames Laboratory (Iowa State Univ.):
 low temp, regenerator materials overview, 457
AMS-2 spectrometer:
 qualification of coolers for, 1, 37
 cooler operation in high magnetic fields, 761
APD Cryogenics:
 Cryotiger in SQUID application, 789
Applications of cryocoolers (see Integration with cryocoolers)
ARC (auto-refrigerating-cascade) cycle, 595
ARC, NASA (see Ames Research Center)
ASTER flight cooler performance, 737
Astrum cryocoolers (formerly BAe and MMS):
 10K 2-stage testing at AFRL, 59
 50-80K MOPITT cooler performance, 727
 active vibration cancellation systems, 771
 miniature space pulse tube cooler, 173
Atlas Scientific, 199, 349
Ball Aerospace cooler activities:
 6K ACTDP hybrid Stirling/J-T cooler, 1
 35K/60K PSC testing at AFRL, 51
 multistage Stirling cooler development, 45
 optical cooling mirror leakage effects, 687
 parallel plate heat exchangers, 507
 Redstone hybrid 10K J-T/GM cooler, 579
Bearings:
 flexures in tactical coolers, 17, 69
 flexures in space coolers, 31
 linearity of flexure suspension systems, 255
Brayton cycle cryocoolers (see Reverse-Brayton cryocoolers)
British Aerospace (BAe) cryocoolers (see Astrium cryocoolers)
Calif. Institute of Tech. (see also Jet Prop. Lab):
 sub-Kelvin cooler for Polatron, 651
CEA/SBT (France):
 50-80K PT cooler for space, 165
 high capacity 5W-80K PT cooler, 131
 miniature space pulse tube cooler, 173
 piston resonance in orifice PT, 265
 sub-Kelvin sorption/PT cooler, 669
Chinese Academy of Sciences, Cryogenics Lab:
 40-80K linear-compressor PT cooler, 115
 60K PT cooler system design, 123
 capillary tube expanders for mixed gases, 609
 dc flow, caused by regen nonlinearities, 425
 dephlegmation separator for mixed gases, 603
 GM-type coaxial PT cooler experiments, 317
 nonmetallic pulse tube for SQUIDs, 799
 oscillating regenerator flow at low temp, 539
 role of PT orifice and secondary bypass, 361
 thermoaoustic device analysis, 431
 thermoaoustics, high freq. operation, 439
 thermoaoustics, influence of convection, 447
 thermoaoustics, onset temp gradient, 421
 vortex tube applied to auto-cascade J-T, 621
 vortex tube modeled as heat exchanger, 615
CMC Electronics:
 tactical cooler lifetest results, 79
Collins-type 10K cryocooler, 587
Compressors:
 hybrid sorption compressor elements, 627
 linearity of linear suspension systems, 255
 producibility of linear compressors, 275
 reverse Brayton, 571
 scaling of linear compressors, 247
Conductance, of bonded regenerator materials, 517
Contamination:
 in LMA PT cooler flight experiment, 777
 overview, for low-e surfaces in space, 727
Creare Cryocoolers:
 6K ACTDP cooler development, 1, 571
 6K Brayton cooler developments, 571
 NICMOS rev-Brayton, 1, 563
Cryogenic Ltd (UK), 813
Cryomech, Inc:
 4K and 10K pulse tubes, 293
 4K precooler for sub-Kelvin sorption, 669
Cryotiger, integration of SQUIDs with, 789
DC flow:
 caused by natural convection, 447
 caused by regenerator nonlinearities, 425
Dephlegmation separator, 603
Dilution refrigerator on 4K PT, 669
DRS tactical Stirling coolers, 17
Dynacs Engineering, 59, 51
Eindhoven Univ. of Technology, 283
Electric field emissions (see EMI/EMC measurements and suppression)
Electromagnetic interference (see EMI/EMC measurements and suppression)
Electronics, vibration cancellation, 771
EMI/EMC measurements and suppression:
 HTS SQUID applications, 789, 799
 operation of coolers in high mag fields, 761
 Polatron microwave receiver, 651
Erbium regenerator materials (see Regenerators)
European Space (ESA/ESTEC) activities:
 50-80K PT cooler for space, 165
 Astrium miniature space PT cooler, 173
 Lockheed 2.7W-80K PT cooler, 205
Flexible thermal links, 205, 709
Flexure bearings (see Bearings)
Friedrich-Schiller-Universität, Jena, 337
Fuji Electric 70K commercial PT cooler, 157
Fujiitsu, Ltd., 737
Gas-gap heat switches (see Heat switches)
Gedeon Associates, 139
General Electric MRI applications, 805
Georgia Institute of Tech., 547
Gifford-McMahon Cryocoolers:
 improvement at 4K using GOS, 403
 regenerator degradation analysis, 805
 thermal hysteresis at 4K, 411
Gimbal mount:
 thermal transport system for, 693
 vibration reduction for, 717
Goddard Space Flight Center (NASA):
 continuous magnetic refrigerator, 661
 NASA cooler program overview, 1
 operation of coolers in high mag fields, 761
 qualification of coolers for AMS-02, 37
 RHESSI on-orbit performance, 755
 GOS regenerator material (see Regenerators)
 Heat conduction (see Conductance)
 Heat exchangers:
 compact high-effect. parallel plate, 507
 Heat pipes:
 cryogenic, 709
 Swales development and testing of, 693
 Heat switches:
 Swales development and testing of, 693
 HESSI (see RHESSI)
 High temperature superconductor applications (see Integration of Cryocoolers with)
 HIRDLs instrument cryocoolers, 1
 Holmium regenerator materials (see Regenerators)
 HTS applications (see Integ. of cryocoolers with)
Huazhong Univ. (China), 439
Hybrid multistage coolers:
 Ball 6K ACTDP J-T/Stirling, 1
 dilution refrigerator on 4K PT, 669
 Redstone 10K J-T/GM cooler, 579
 sub-Kelvin sorption on 4K PT cooler, 669
 TRW 6K ACTDPJ-T/PT, 1
 Hydrides (see Sorption cryocoolers)
 Hymatic Engineering Co:
 producibility of linear compressors, 275
 scaling of linear compressors, 247
IGC-APD Cryogenics (see APD Cryogenics)
INTEGRAL mission coolers, 205, 771
Integration of cryocoolers with:
 gimbal mounts, 693, 717
 heart monitor, 789
 heat pipes, 693, 709
 heat switches, 693
 low-emittance surfaces, 727
 MRI systems, 805
 Polatron GHz receiver, 651
 space experiments (see Space experiments)
 space instruments (see Space instruments)
 SQUIDs, 789, 799
 superconductive generators, 805
 superconductive magnet systems, 813
 thermal storage, 233, 693
 vibration control systems, 109, 717, 771
ISAMS, in-space cooler performance, 727
J-T cryocoolers:
 Ball ACTDP 6K cooler development, 1
 capillary tube expanders for mixed gases, 609
 Cryotiger for cooling SQUIDs, 789
 dephlegmation separator for mixed gases, 603
 mixed-gas auto-cascade J-Ts, 595
 Redstone hybrid 10K J-T/GM cooler, 579
 superfluid compressor performance, 675
 TRW ACTDP 6K cooler development, 1
 vortex tube applied to auto-cascade J-T, 621
 vortex tube modeled as heat exchanger, 615
JAMI flight coolers, 191
Jet Propulsion Lab:
ACTDP cooler development program, 1
AIRS PT cooler in-space performance, 747
contamination of low-e surfaces, 727
NASA cooler program overview, 1
Planck hydride compressor elements, 627
Planck EBB breadboard cooler testing, 637
Joule-Thomson Cryocoolers (see J-T cryocoolers)

Kleemenko cycle refrigerator, 595
Kogakuin Univ., 467
Konoshima Chemical Co., 473
Korea Adv. Inst. of Sci. and Tech.:
surface heat pumping loss in PT, 371
regenerator model with oscillating flow, 531
Korea Inst. of Machinery and Materials:
linear free-piston Stirling experiments, 95
linear free-piston Stirling modeling, 103
Leybold Vacuum GmbH:
5W-80K pulse tube cooler, 149
Life estimation methods, 79, 87
Life test results:
Ball Aerospace 35K/60K, 51
CMCtactical coolers, 79
Thales tactical coolers, 87
LIGA-fabricated regenerators, 489
Lockheed Martin Astronautics Operations:
pulse tube flight experiment, 777
Lockheed Martin Advanced Tech. Center:
6K ACTDP PT cooler development, 1
10K PT for space applications, 241
35K two-stage PT cryocooler, 213
35K/85K high capacity 2-stage PT, 225
80K/2.7W INTEGRAL PT, 205
Loopheat pipes, cryogenic, 709
Loughborough Univ. vibration suppression, 717
Magnets, helium free cooling of, 813
Magnetic fields (see EM/EMC):
cooler operation in high mag fields, 761
Magnetic refrigerators:
continuous ADR for below 50 mK, 661
regenerator materials for (see Regenerators)
refrigerant materials for (see Refrigerants)
Massachusetts Institute of Technology:
Collins-type 10K cryocooler, 587
superfluid He J-T refrigerator, 675
superfluid He Stirling refrigerator, 681
Materials:
conductance of (see Conductance)
refrigerants (see Refrigerants)
regenerator (see Regenerators)
Matra Marconi coolers (see Astrium coolers)
Meisei Univ., 467
Messer Cryothenn GmbH, 595
Mezzo Systems, 489
Microcooler, Univ. of Twente sorption, 643
Microphonics (see vibration)
Mitchell Stirling, 499
MIT (see Massachusetts Institute of Technology)
Mitsubishi Electric, 737
Mixed refrigerants (see Refrigerants, and J-T cryocoolers)
MOPITT cooler performance, 727
MRI applications (see Integ. of cryocoolers with)
NASA (see individual centers):
cooler program overview, 1
NASDA (Japan):
pressure wave generator for PT, 343
Nat'l Inst. of Adv. Ind. Sci. & Tech. (Japan), 737
Nat'l Inst. of Standards and Tech. (see NIST)
NICMOS:
reverse-Brayton cooler flight data, 563
in NASA cooler programs overview, 1
Nihon University:
4K VM-type pulse tube cooler, 331
pressure wave generator for PT, 343
NIST:
bonded regenerator matrix mat'l's, 517
LMA pulse tube flight experiment, 777
LM-ATC high capacity 2-stage PT, 225
parallel plate heat exchangers, 507
regenerator loss measurements, 523
Northrop Grumman:
Elect. Sensors and Systems, 225
Space Technology (see TRW)
Optical cooling mirror leakage effects, 687
Optical Engineering Associates, 687
Orientation, effect on performance:
Sunpower pulse tube cooler, 139
pulse tube off-state conduction, 747
thermoacoustic driver, 447
Phase change materials (see Thermal Storage)
Planck sorption coolers
NASA cooler program overview, 1
compressor performance testing, 627
EBB breadboard cooler testing, 637
Polatron, sub-Kelvin coolers for, 651
Producibility, of linear compressors, 275
Pulse tube cryocoolers:
1.5K 'He Eindhoven Univ., 283
4K two-stage Aisin Seiki, 309
4K two-stage Sumitomo, 301
4K VM-type pulse tube cooler, 331
40-80K linear-compressor Chinese, 115
50-80K Air Liquide for space, 165
60K linear-compressor Chinese, 123
80K-5W high capacity at CEA/SBT, 131
80K-5W Giessen/Leybold, 149
Astrium miniature space cooler, 173
Cryomech 4K and l0K, 293
Cryomech 4K precooler for sub-Kelvin, 669
Fuji Electric 70K commercial cooler, 157
LM-ATC 6K 4-stage ACTDP, 1
LM-ATC 10K PT for space, 241
LM-ATC 35K two-stage cooler, 213
LM-ATC 35K high-capacity cooler, 225
LM-ATC 80K 2.7W for INTEGRAL, 205
Raytheon low-cost space cooler, 183
Raytheon hybrid Stirling/PT for 35K, 233
Sunpower single and 2-stage, 139
Thales 80K PT w/ flexure bearings, 109
TRW ACTDP 17K J-T precooler, 1
TRW AIRS 55K, 1, 747
TRW HCC 35K/85K two-stage, 219
TRWJAMI, 191
TRW 58K TES, 1

Pulse tube theory and investigations:
1. 5K 3He Eindhoven Univ., 283
4K VM-type pulse tube cooler, 331
effect of orientation on performance, 139
GM-type coaxial PT experiments, 317
He/H2 mixed gas, use of at 20K, 325
LMA pulse tube flight experiment, 777
mass flow control, effect of, 337
model of hybrid PT/rev-Brayton cooler, 349
model using method of lines, 379
nonmetallic, nonmagnetic for SQUIDs, 799
offset conduction vs. angle, 747
piston resonance in orifice PT, 265
pressure wave generator for PT, 343
regenerator loss at low temp and high freq, 523
role of orifice and secondary bypass, 361
surface heat pumping loss, 371
thermoacoustic PT with mixed gases, 451
Univ. of Calgary PT analysis, 389
Pusan National Univ. (Korea), 95

RAL (see Rutherford Appleton Laboratory)
Rare earth compounds (see Regenerators)
Raytheon (formerly Hughes Aircraft):
low-cost, lightweight space coolers, 183
comparison of regenerator models, 547
PT model using method of lines, 379
RSP2 hybrid Stirling/PT for 35K, 233
Raytheon Infrared Operations:
tactical cryocooler development, 69
Recuperators:
forturbo-Brayton coolers, 571
parallel plate heat exchangers, 507
Redstone Engineering hybrid 10K J-T, 579

Refrigerants:
3He for use below 4K, 283
He/H2 mixed gas, use in 20K PT, 325
noble gas mixture for thermoacoustics, 451
superfluid He, 675, 681

Regenerators:
bonded regenerator matrix mat'ls, 517
comparison of numerical models, 547
dc flow caused by nonlinearities, 425
degradation in GM MRI application, 805
etched foil, improved flow in, 499
GAP material in 4K PT, 309
GdSb, properties of, 467
GOS ceramic mat'l for 4K coolers, 397, 403, 473
LIGA-fabricated microchannel, 489
loss meas. at low temp and high freq., 523
modeling oscillating flow and pressure, 531
modeling periodic flow in porous media, 555
nonmetallic, nonmagnetic for SQUIDs, 799
oscillating regenerator flow at low temp, 539
overview of low temperature mat'ls, 457
perforated plates, predictions for, 483

Reliability of cryocoolers:
CMC tactical cooler lifetest results, 79
degradation of low-e surfaces in space, 727
GM in medical MRI application, 805
MTTF predictions on Thales coolers, 87
STI Stirling cooler reliability data, 75

Reverse-Brayton cryocoolers:
6K Creare cooler developments, 571
Creare ACTDP 6K cooler study, 1
NICMOS operation on HST, 1, 563

RHESSI
in NASA cooler missions overview, 1
in-space performance, 755
Ricor vibration protective mount, 717
Rutherford Appleton Laboratory, 173

SADA linear tactical cooler overview, 17
Santa Clara University, 499

Sorption cryocoolers:
microcoolers, Univ. of Twente, 643
Planck hydride compressor elements, 627
Planck EBB breadboard cooler testing, 637
sub-Kelvin for Polatron, 651
sub-Kelvin on 4K Cryomech PT cooler, 669

Space experiments:
Lockheed Martin Astronautics PT cooler, 777
Swales thermal integration technologies, 693

Space instrument missions:
AIRS, 1, 747
ASTER, 737
HIRDLS, 1
INTEGRAL, 771, 205
ISAMS, 727
JAMI, 191
MOPITT, 727
NASA mission summary, 1
NICMOS, 1, 563
Planck, 1, 627, 637
RHESSI, 1, 755
TES, 1

SQUIDs (see Integration of cryocoolers with):

Stirling cryocoolers:
Air Liquide high capacity for ISS, 31
ASTER, space performance of, 737
Astrium 10K cooler testing, 59
Astrium/MMS S0-80K MOPITT, 727
Ball multistage cooler development, 45
Ball 35K/60K PSC testing at AFRL, 51
CMC tactical cooler lifetest results, 79
linear tactical for weapon systems, 17
Oxford 100mW 80K low power, 27
Oxford/BAe 80K ISAMS, 727
Raytheon RS1 for Space, 183
Raytheon RSP2 Stirling/PT for 35K, 233
Raytheon Infrared Operations tactical, 69
SADA linear tactical cooler overview, 17
Sunpower M87N, qual. for AMS-02, 37, 761
Sunpower space perf. on RHESSI, 755
Superconductor Tech., Inc., reliability, 75
Thales tactical coolers, 87
Stirling cryocooler theory and investigations:
 dynamic analysis of free-piston linear, 103
 experimental study of phase shift in linear, 95
 MTTF prediction for tactical coolers, 87
 operation in high magnetic fields, 761
Sub-Kelvin coolers:
 continuous ADR, 661
 dilution refrigerator on 4K PT, 669
 sorption cooler for Polatron, 651
 sorption precooled on 4K PT, 669
Sumitomo Heavy Industries:
 4K two-stage pulse tube cooler, 301
 GM regenerator degradation analysis, 805
 GM improvement at 4K using GOS, 397, 403
 GOS ceramic regen mat’l for 4K coolers, 473
Sunpower coolers:
 operation in high magnetic fields, 761
 qualification of M87N for AMS-02, 37
 RHESSI on-orbit performance, 755
 single and 2-stage pulse tube coolers, 139
Superconductor applications (see Integration of cryocoolers with)
Superconductor Technologies Inc. (STI), 75
Superfluid helium as working fluid:
 in Joule-Thomson refrigerator, 675
 in Stirling refrigerator, 681
Swales Aerospace:
 components for cryo integration, 693
 Planck cryocooler development, 627
TES Instrument cryocoolers, 1
Texas Instruments (see DRS cryocoolers)
Thales Cryogenics:
 50-80K PT cooler for space, 165
 high capacity 5W-80KPT cooler, 131
 high capacity Stirling cooler for ISS, 31
 low vibration80K PT w/flexure bearings, 109
 MTTF of Thales tactical coolers, 87
Thermacore cryogenic loop heat pipes, 709
Thermal conductivity (see Conductance)
Thermal storage:
 helium/charcoal TSU for 15K, 579
 Swales development and testing of, 693
Thermal switch (see Heat switch)
Thermoacoustic generator:
 analysis using distributed-parameters, 431
 dc flow, caused by regen nonlinearities, 425
 driven PT with mixed noble gases, 451
 high freq. operation, investigation of, 439
 onset temperature gradient, study of, 421
TRW (now Northrop Grumman Space Tech.):
 ACTDP 6K cooler development, 1
 AIRS 55K pulse tube cooler, 1
 HCC 35K/85K two-stage PT cooler, 219
 JAMI pulse tube cooler, 191
 JAMI pulse tube cooler, 191
 producibility of linear compressors, 275
 scaling of linear compressors, 247
 TES 58K pulse tube cooler, 1
Tsukuba Magnet Laboratory:
 GM improvement at 4K using GOS, 397, 403
 GOS ceramic material for 4K coolers, 473
 regenerator properties of GdSb, 467
Turbo Brayton coolers (see reverse Brayton coolers)
 Univ. of Calgary, 389
 Univ. of Dresden, 595
 Univ. of Giessen, 149
 Univ. of Oxford:
 linearity of flexure suspension systems, 255
 low-power Stirling cooler, 27
 producibility of linear compressors, 275
 scaling of linear compressors, 247
 Univ. of Southern Calif., PT modeling, 379
 Univ. of Twente:
 sorption microcooler, 643
 SQUID-based fetal heart monitor, 789
 Univ. of Wisconsin:
 model for hybrid PT/rev Brayton, 349
 regenerator loss measurements, 523
US Army Night Vision, 17
Vibration:
 Astrium cancellation system, 771
 suppression with gimbaled instrument, 717
 Thales vibration control algorithm, 109
 sensitivity of Polatron instrument, 651
VM-type pulse tube cooler, 331
Vortex tube:
 applied to auto-cascade J-T, 621
 modeled as heat exchanger, 615
Zero-boil-off cryogen storage, 199
Zhejiang Univ.:
 capillary tube expanders for mixed gases, 609
 PT with He/H2 mixed gas at 20K, 325
 thermoacoustic device analysis, 431
 thermoacoustic driven PT cooler, 451
 thermoacoustics, onset temp gradient, 421
 vortex tube applied to auto-cascade J-T, 621
 vortex tube as heat exchanger, 615