Subject Index

Accumulators (see Thermal storage)

ACTDP cryocooler development:
 Ball Aerospace development, 1, 15
 for MIRI instrument, 15
 Lockheed Martin ATC development, 25
 NGST cooler development, 9, 15

ADR (see Magnetic refrigerators)

Adv. Mechanical Tech., Inc, 41

Aerospace Corporation, 85

AIM tactical cryocoolers, 671

Air Force Research Lab (AFRL):
 Ball real-time piston alignment tracking, 225
 Ball SB235 2-stage 35K Stirling deelv., 65
 long-life cryocooler database update, 599
 modeling cyclic flow in regenerators, 445
 modeling energy and exergy flow in PTs, 353
 multi-kilowatt Q-drive G-M compressor, 201
 NGST 150 K mini PT testing, 85
 phase shift in inerance tubes, 275

Air Liquide DTA (France):
 30K PT using 80K precooling, 149
 50-80K PT cooler for space, 93
 International Space Station freezer, 661

AIRS instrument cryocoolers:
 comparison with Japanese PT coolers, 101
 in-space performance, 609

Aisin Seiki, 80K PT for maglev vehicles, 681

American Superconductor:
 50W at 55K single-stage PT cooler, 157
 thermosiphon, 593

Ames Research Center (NASA):
 enthalpy; entropy and exergy in PTs, 333, 343
 Ames Laboratory (lowa State Univ):
 low temp. regenerator mats, 363
 Applications of cryocoolers (see Integration with cryocoolers)
 Astrium cryocoolers (formerly BAE and MMS):
 in-space performance on INTEGRAL, 619
 Atlas Scientific multi-kW Q-drive G-M comp, 201

Ball Aerospace cooler activities:
 6K ACTDP hybrid Stirling/J-T cooler, 1, 15
 optical refrigerator performance, 575
 real-time piston alignment tracking, 225
 SB235 2-stage 35K Stirling development, 65
 Brayton cycle (see Reverse-Brayton cryocoolers)

British Aerospace (BAe) cryocoolers (see Astrium)

CEA/SBT (France):
 100 mK ADR for space missions, 561
 30K PT using 80K precooling, 149
 50-80K PT cooler for space, 93
 sub-Kelvin sorption cooler, 543

Central Japan Railway Company:
 PT refrigerator for maglev vehicles, 681

Chinese Academy of Sciences, Cryogenics Lab:
 exper. study of high freq. PT regenerator, 439
 flow characteristics of cyclic regenerators, 431
 non-metallic pulse tube for SQUIDs, 411
 phase shift in inerance tubes, 267
 thermoacoustic-driven pulse tube cooler, 195
 thermoacoustic refrigerator for 250K, 189

CIMEX BioTech, 671

Claude refrigeration cycle, 711

Clearance seals (see Compressors)

Clever Fellows Innovation Consortium (CFIC):
 4 kW linear Q-drive compressor, 165
 control of piston drift with clearance seals, 215
 multi-kilowatt G-M compressor, 201

CMC Electronics 1-watt cooler perf, 77

CNES summary of INTEGRAL performance, 619

Collins-type 10K cryocooler, 41

Columbia University:
 LXe TP chamber, 689
 nonmetallic PT for SQUID operation, 411

Compressors:
 4kW CFIC pressure wave generator, 165
 compression losses in cryocoolers, 209
 control of piston drift with clearance seals, 215
 dynam. counterbalanced single piston comp, 241
 multi-kilowatt CFIC G-M compressor, 201
 real-time piston alignment tracking, 225
 sensorless balancing of linear compressors, 231

Creare NICMOS rev-Brayton flight data, 633

Cryomech 10K pulse tube cryocoolers, 133

Cryotiger cooler, 481

Cyclic flow, effect on regenerators, 431, 445

Darwin mission 4K sorption cooler, 503

Database of long-life cryocoolers, 599

Dilation refrigerator for Planck-HFI, 533

DRS tactical Stirling coolers, 671
<table>
<thead>
<tr>
<th>Subject</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynacs Engineering:</td>
<td></td>
</tr>
<tr>
<td>AFRL cryocooler database update, 599</td>
<td></td>
</tr>
<tr>
<td>Ball real-time piston alignment tracking, 225</td>
<td></td>
</tr>
<tr>
<td>modeling energy and exergy flow in PTs, 353</td>
<td></td>
</tr>
<tr>
<td>NGST 150 K mini PT testing, 85</td>
<td></td>
</tr>
<tr>
<td>Eindhoven Univ. of Technology, 251</td>
<td></td>
</tr>
<tr>
<td>Electromagnetic interference (see EMI/EMC measurements and suppression)</td>
<td></td>
</tr>
<tr>
<td>Electronics, vibration cancellation (see Vibration)</td>
<td></td>
</tr>
<tr>
<td>EMI/EMC measurements and suppression: HTS SQUID applications, 411</td>
<td></td>
</tr>
<tr>
<td>Equinox Interscience, 395</td>
<td></td>
</tr>
<tr>
<td>Erbium regenerator materials (see Regenerators)</td>
<td></td>
</tr>
<tr>
<td>European Space (ESA/ESTEC) activities:</td>
<td></td>
</tr>
<tr>
<td>50-80K PT cooler for space, 93</td>
<td></td>
</tr>
<tr>
<td>Darwin 4K sorption cooler, 503</td>
<td></td>
</tr>
<tr>
<td>International Space Station Freezer, 661</td>
<td></td>
</tr>
<tr>
<td>Exergy flows in pulse tubes, 333, 343, 353</td>
<td></td>
</tr>
<tr>
<td>Florida Solar Energy Center, 711</td>
<td></td>
</tr>
<tr>
<td>Friedrich-Schiller-Universität, Jena, 389</td>
<td></td>
</tr>
<tr>
<td>Freezer, 90K for biological samples, 661</td>
<td></td>
</tr>
<tr>
<td>FZKPTR pulse tube computer code, 323</td>
<td></td>
</tr>
<tr>
<td>Gas-gap heat switches (see Heat switches)</td>
<td></td>
</tr>
<tr>
<td>Gedeon Associates, 31, 421</td>
<td></td>
</tr>
<tr>
<td>Georgia Institute of Tech.: CFD simulation of PT with inertance tube, 285</td>
<td></td>
</tr>
<tr>
<td>fast regenerator numerical model, 455</td>
<td></td>
</tr>
<tr>
<td>regenerator modeling with cyclic flow, 445</td>
<td></td>
</tr>
<tr>
<td>Gifford-McMahon Cryocoolers: multi-kilowatt CFIC compressor for, 201</td>
<td></td>
</tr>
<tr>
<td>Goddard Space Flight Center (NASA): continuous ADR for below 100 mK, 553</td>
<td></td>
</tr>
<tr>
<td>RHESISI on-orbit performance, 629</td>
<td></td>
</tr>
<tr>
<td>GOS regenerator material (see Regenerators)</td>
<td></td>
</tr>
<tr>
<td>Gravitational wave detectors, cooling of, 695, 703</td>
<td></td>
</tr>
<tr>
<td>Heat switches, for ADRs, 553, 561, 567</td>
<td></td>
</tr>
<tr>
<td>HESSI (see RHESISI)</td>
<td></td>
</tr>
<tr>
<td>High temperature superconductor applications (see Integration of cryocoolers with)</td>
<td></td>
</tr>
<tr>
<td>Holmium regenerator materials (see Regenerators)</td>
<td></td>
</tr>
<tr>
<td>HTS applications (see Integ. of cryocoolers with)</td>
<td></td>
</tr>
<tr>
<td>Hybrid multistage coolers:</td>
<td></td>
</tr>
<tr>
<td>Ball 6K ACTDP J-T/Stirling, 1, 15</td>
<td></td>
</tr>
<tr>
<td>NGST 6K ACTDP J-T/PT, 9, 15</td>
<td></td>
</tr>
<tr>
<td>Raytheon hybrid Stirling/PT for 40K, 127</td>
<td></td>
</tr>
<tr>
<td>Redstone 10K J-T/GM cooler, 583</td>
<td></td>
</tr>
<tr>
<td>Hydrides (see Sorption cryocoolers)</td>
<td></td>
</tr>
<tr>
<td>IGC Polycold Systems, 481</td>
<td></td>
</tr>
<tr>
<td>INTEGRAL mission coolers, 619</td>
<td></td>
</tr>
<tr>
<td>Integration of cryocoolers with:</td>
<td></td>
</tr>
<tr>
<td>biological sample freezer, 661</td>
<td></td>
</tr>
<tr>
<td>cryosurgical probes, 671</td>
<td></td>
</tr>
<tr>
<td>densified propellants, 711</td>
<td></td>
</tr>
<tr>
<td>gravitational wave detectors, 695, 703</td>
<td></td>
</tr>
<tr>
<td>maglev trains, 681</td>
<td></td>
</tr>
<tr>
<td>natural gas liquefaction, 181</td>
<td></td>
</tr>
<tr>
<td>space instruments (see Space instruments) SQUIDs, 411</td>
<td></td>
</tr>
<tr>
<td>thermal storage, 583</td>
<td></td>
</tr>
<tr>
<td>thermosiphon, 593</td>
<td></td>
</tr>
<tr>
<td>vibration control systems (see Vibration)</td>
<td></td>
</tr>
<tr>
<td>Inertance tubes (see Pulse tube theory and investigations)</td>
<td></td>
</tr>
<tr>
<td>International Mezzo Technologies, 405</td>
<td></td>
</tr>
<tr>
<td>Iwatani Industrial Gases:</td>
<td></td>
</tr>
<tr>
<td>165K-70W PT cooler for Xe liquefaction, 689</td>
<td></td>
</tr>
<tr>
<td>JAXA (Japan Aerospace Exploration Agency):</td>
<td></td>
</tr>
<tr>
<td>comparison of Japanese PTs for space, 101</td>
<td></td>
</tr>
<tr>
<td>J-T cryocoolers:</td>
<td></td>
</tr>
<tr>
<td>Ball ACTDP 6K cooler development, 1, 15</td>
<td></td>
</tr>
<tr>
<td>Cryotiger with mixed refrigerants, 481</td>
<td></td>
</tr>
<tr>
<td>NGST ACTDP 6K cooler devel., 9, 15</td>
<td></td>
</tr>
<tr>
<td>performance testing of in Korea, 497</td>
<td></td>
</tr>
<tr>
<td>Redstone hybrid 10K J-T/GM cooler, 583</td>
<td></td>
</tr>
<tr>
<td>Jet Propulsion Laboratory (NASA): ACTDP coolers for MIRI, study of, 15</td>
<td></td>
</tr>
<tr>
<td>active versus standby redundancy, 609</td>
<td></td>
</tr>
<tr>
<td>AIRS PT cooler in-space performance, 609</td>
<td></td>
</tr>
<tr>
<td>Ball Aerospace ACTDP cooler devel., 1</td>
<td></td>
</tr>
<tr>
<td>Planck cooler test facility, 523</td>
<td></td>
</tr>
<tr>
<td>Joule-Thomson Cryocoolers (see J-T cryocoolers)</td>
<td></td>
</tr>
<tr>
<td>KEK High Energy Accel. Research Organ. 165K-70W PT cooler for Xe liquefaction, 689</td>
<td></td>
</tr>
<tr>
<td>PT vibration suppres. for grav wave det., 695, 703</td>
<td></td>
</tr>
<tr>
<td>Kennedy Space Center (NASA), 711</td>
<td></td>
</tr>
<tr>
<td>Konoshima Chemical Co., 373</td>
<td></td>
</tr>
<tr>
<td>Korea Inst. of Machinery and Materials:</td>
<td></td>
</tr>
<tr>
<td>performance of J-T refrigerator, 497</td>
<td></td>
</tr>
<tr>
<td>study of coaxial PT with inertance tube, 261</td>
<td></td>
</tr>
<tr>
<td>Korea University, 497</td>
<td></td>
</tr>
<tr>
<td>LIGA-fabricated regenerators, 405</td>
<td></td>
</tr>
<tr>
<td>Lockheed Martin Space Systems (Denver): orbit induced oscillations in PT, 641, 651</td>
<td></td>
</tr>
<tr>
<td>55K/140K GIFTS PT cooler, 121</td>
<td></td>
</tr>
<tr>
<td>RAMOS 75K-130K 2-stage PT cooler, 115</td>
<td></td>
</tr>
<tr>
<td>Los Alamos National Laboratory (DOE): thermoacoustic PT refrigerator, 181</td>
<td></td>
</tr>
<tr>
<td>Loughborough Univ., vibration suppression, 231</td>
<td></td>
</tr>
<tr>
<td>Maglev trains, coolers for, 681</td>
<td></td>
</tr>
<tr>
<td>Magnetic fields (see EMI/EMC):</td>
<td></td>
</tr>
<tr>
<td>Magnetic refrigerators:</td>
<td></td>
</tr>
<tr>
<td>100 mK ADR for space missions, 561</td>
<td></td>
</tr>
<tr>
<td>continuous ADR for below 100 mK, 553</td>
<td></td>
</tr>
<tr>
<td>heat switches and magnets for mini-ADR, 567</td>
<td></td>
</tr>
<tr>
<td>model for magnetic refrigeration system, 471</td>
<td></td>
</tr>
<tr>
<td>refrigerant materials for (see Refrigerants) regenerator materials for (see Regenerators)</td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology:</td>
<td></td>
</tr>
<tr>
<td>Collins-type 10K cryocooler, 41</td>
<td></td>
</tr>
</tbody>
</table>
Materials:
refrigerants (see Refrigerants)
regenerator (see Regenerators)
Matra Marconi coolers (see Astrium coolers)
Microcooler, Univ. of Twente sorption, 489
Microphonics (see vibration)
MIT (see Massachusetts Institute of Technology)
Mitsubishi Electric:
80K PT refrigerator for maglev vehicles, 681
Mixed refrigerants (see Refrigerants, and J-T cryocoolers)
Moscow State University, 381

NASA/ARC (see Ames Research Center)
NASA/GSFC (see Goddard Space Flight Center)
NASA/JPL (see Jet Propulsion Laboratory)
NASA/KSC (see Kennedy Space Center)
NASA/JPL (Japan) (see JAXA)
NaI Inst. of Adv. Ind. Sci. & Tech. (Japan), 313
NaI Inst. of Standards and Tech. (see NIST)
NICMOS reverse-Brayton cooler flight data, 633
Nihon University:
165K-70W PT cooler for Xe liquefaction, 689

NIST:
phase shifts in inertance tubes, 267
PT analysis with tactical linear comp., 671
Northrop Grumman Space Tech. (previously TRW):
150 K mini PT testing at AFRL, 85
ACTDP 6K cooler development, 9, 15
AIRS 55K pulse tube cooler, 101, 609
HCC 35K/85K two-stage PT cooler, 109

Optical refrigerator performance, 575

Perovskites (see Refrigerants)
Phase change materials (see Thermal Storage)
Planck sorption coolers:
test facility for, 523
Praxair:
200W at 80K PT refrigerator, 165
1500W at 72.5K PT refrigerator, 173
effect of mean pressure on PT, 177
large thermoacoustic PT refrigerator, 181
Propellant liquefaction and densification, 711
Pulse tube cryocoolers:
30K CEA/SBT PT using 80K precooler, 149
50-80K Air Liquide for space, 93
5K-15W AIRS, 101, 609
75K-130K 2-stage RAMOS cooler, 115
80K-5W Giesen/Leybold/AIM, 141
80K-170W for maglev vehicles, 681
165K-70W KEK for Xe liquefaction, 689
250K-80W thermoacoustic driven, 189
Amex Supercond. 50W at 55K for HTS, 157
Chinese thermoacoustic-driven PT cooler, 195
comparison of Japanese coolers for space, 101
Cryomech PT805 & PT810 lOK coolers, 133
LM-ATC 6K 4-stage ACTDP, 25
LM-ATC 55K/140K GIFTS cooler, 121
NGST 18 K precooler for ACTDP, 9, 15

NGST 35K/85K HCC 2-stage PT, 109
NGST 150 K mini PT testing, 85
Praxair 200W at 80K, 165
Praxair 1500W at 72.5K, 173
Praxair large thermoacoustic driven, 181
Raytheon hybrid Stirling/PT for 40K, 127
Sunpower 3-stage10K status, 31

Pulse tube theory and investigations:
analysis with tactical linear compressors, 671
CFD simulation with inertance tube, 285
compression losses in cryocoolers, 209
counterflow PT refrigerator, 251
effect of mean pressure on PT perf., 177
energy and exergy flows in PTs, 333, 343, 353
meas. with Leybold and AIM linear comp., 141
model using electrical network analysis, 293
non-metallic, non-magnetic for SQUIDs, 411
numerical code for design of PT, 323
numerical sym. of flow and heat transfer, 303
orbit induced temperature oscillations, 641, 651
phase shift in inertance tubes, 267, 275
secondary flow visualization in tapered PT, 313
study of coaxial PT with inertance tube, 261
Pusan National Univ (Korea), 261

Rare earth compounds (see Regenerators)
Raytheon Space Systems (formerly Hughes Aircraft):
CFD simulation of PT with inertance tube, 285
fast regenerator numerical model, 455
hybrid Stirling/PT for 40K, 127
numerical simulation of PT flow, 303
RS1 Stirling cooler performance, 59
Redstone Engineering hybrid 10K J-T, 583
Redundancy trade-offs, 609
Refrigerants:
doped AMnOj perovskites for ADRs, 381
mixed refrigerant comparison in Cryotiger, 481

Regenerators:
ceramic material status (GAP, GOS, etc), 373
counterflow regen. for PT refrigerator, 251
cylic flow, characteristics with, 431, 439, 445
ductile intermetallic compounds for 4-16K, 363
calcium generator numerical model, 455
flow circulation in foil-type regenerators, 421
lead wire mesh for low temp., 389
LIGA-fabricated microchannel, 405
temp. and porosity matrix for high freq., 395
non-metallic, non-magnetic for SQUIDs, 411
optimization using REGEN 3.2, 463

Reliability of cryocoolers:
active versus standby redundancy, 609
STI Stirling cooler reliability data, 51
Reverse-Brayton cryocoolers:
use for propellant densification, 711
NICMOS operation on HST, 633
RHESSI in-space performance, 629
Ricor:
dyn. counterbalanced 1-piston comp., 241
sensorless balancing of 2-piston comp., 231
Sierra Lobo, Inc., 293
Sorption cryocoolers:
- CEA/SBT sub-Kelvin for Herschel, 543
- Planck cooler test facility at JPL, 523
- microcooler at Univ of Twente, 489
- single-cell sorption compressor design, 513
Space cryocoolers, AFRL database for, 599
Space instrument missions:
- AIRS, 101, 609
- Darwin, 503
- GIFTS, 121
- Herschel, 543
- INTEGRAL, 619
- International Space Station (ISS) Freezer, 661
- MIRI (JWST), 15
- NICMOS, 633
- Planck, 523, 533, 543
- RAMOS, 115
- RHESSI, 629
SQUIDs (see Integration of cryocoolers with):
- Superconductor Technologies Inc (STI):
 - 6W-77K "Sapphire" cryocooler, 51
Texas Instruments (see DRS cryocoolers)
Thales Cryogenics:
- 50-80K PT cooler for space, 93
- cryocooler in ISS freezer, 661
- LSF95xx flexure bearing coolers, 71
Thermal storage:
- helium/charcoal TSU for 15K, 583
- Thermal switch (see Heat switch)
Thermocryostats:
- Chinese thermoacoustic-driven PT cooler, 195
- large thermoacoustic-driven PT refriger., 181
- refrigerator for 80W cooling at 250K, 189
Thermosiphon, for remote cryo devices, 593
Throttle cycle (see J-T cryocoolers)
TRW (see Northrop Grumman Space Tech.)
Tsukuba Magnet Laboratory:
- regenerator mat'l status (GAP, GOS, etc), 373
Turbo Brayton coolers (see reverse Brayton coolers)
- Univ. of Giessen, 141
- Univ. of New Mexico, 275, 353
- Univ. of Oxford:
 - compression losses in cryocoolers, 209
- Univ. of Southern Calif., PT modeling, 303
- Univ. of Tokyo, 695
- Univ. of Tsukuba, 313
- Univ. of Twente:
 - Darwin 4K sorption cooler, 503
 - single-cell sorption compressor design, 513
 - sorption microcooler development, 489
- Univ. of Wisconsin:
 - heat switches and magnets for mini-ADR, 567
 - model for magnetic refrigeration system, 471
 - regenerator optimization using REGEN 3.2, 463
- Vibration:
 - dynam. counterbalanced single piston comp., 241
 - sensorless balancing of linear compressors, 231
 - suppression for gravitational wave detect., 695, 703

Sub-Kelvin coolers:
- 100 mK ADR for space missions, 561
- CEA/SBT sorption for Herschel, 543
- continuous ADR for below 100 mK, 553
- dilution refrigerator for Planck-HFI, 533
Sumitomo Heavy Industries:
- PT vibration suppres. for grav wave det., 695, 703
- regenerator mat'l status (GAR, GOS, etc), 373
Sunpower coolers:
- RHESSI on-orbit performance, 629
- status of 3-stage 10K pulse tube cooler, 31
Superconductor applications (see Integration of cryocoolers with)